Abiotic Stress Response In Plants

Plant Life under Changing Environment: Responses and Management presents the latest insights, reflecting the significant progress that has been made in understanding plant responses to various changing environmental impacts, as well as strategies for alleviating their adverse effects, including abiotic stresses. Growing from a focus on plants and their ability to respond, adapt, and survive, Plant Life under Changing Environment: Responses and Management addresses options for mitigating those responses to ensure maximum health and growth. Researchers and advanced students in environmental sciences, plant ecophysiology, biochemistry, molecular biology, nano-pollution climate change, and soil pollution will find this an important foundational resource. Covers both responses and adaptation of plants to altered environmental states Illustrates the current impact of climate change on plant productivity, along with mitigation strategies Includes transcriptomic, proteomic, metabolomic and ionomic approaches

Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.

World population is growing at an alarming rate and is anticipated to reach about six billion by the end of year 2050. On the other hand, agricultural productivity is not increasing at a required rate to keep up with the food demand. The reasons for this are water shortages, depleting soil fertility and mainly various abiotic stresses. The fast pace at which developments and novel findings that are recently taking place in the cutting edge areas of molecular biology and basic genetics, have reinforced and augmented the efficiency of science outputs in dealing with plant abiotic stresses. In depth understanding of the stresses and their effects on plants is of paramount importance to evolve effective strategies to counter them. This book is broadly dived into sections on the stresses, their mechanisms and tolerance, genetics and
adaptation, and focuses on the mechanic aspects in addition to touching some adaptation features. The chief objective of the book hence is to deliver state of the art information for comprehending the nature of abiotic stress in plants. We attempted here to present a judicious mixture of outlooks in order to interest workers in all areas of plant sciences. This collection discusses the variety of specific molecular reactions by means of which plants respond to physiological and toxic stress conditions. It focuses on the characterization of the molecular mechanisms that underlie the induction of toxicity and the triggered responses and resistances. The nine chapters, all written by prominent researchers, examine heavy metal toxicity, aluminum toxicity, arsenic toxicity, salt toxicity, drought stress, light stress, temperature stress, flood stress and UV-B stress. In addition, information on the fundamentals of stress responses and resistance mechanisms is provided. The book addresses researchers and students working in the fields of plant physiology and biochemistry. Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide. This book is a printed edition of the Special Issue "Biotic and Abiotic Stress Responses in Crop Plants" that was published in Agronomy.

Key features: Serves as a cutting-edge resource for researchers and students who are studying plant abiotic stress tolerance and crop improvement through metabolic adaptations Presents the latest trends and developments in the field of metabolic engineering and abiotic stress tolerance Addresses the adaptation of plants to climatic changes Gives special attention to emerging topics such as the role of secondary metabolites, small RNA mediated regulation and signaling molecule responses to stresses Provides extensive references that serve as entry points for further research Metabolic Adaptations in Plants during Abiotic Stress covers a topic of past, present and future interest for both scientists and policy makers as the global challenge of climate change is addressed. Understanding the mechanisms of plant adaptation to environmental stresses can provide the necessary tools needed to take action to protect them, and hence ourselves. This book brings together recent findings about metabolic adaptations during abiotic stress and in diverse areas of plant adaptation. It covers not only the published results, but also introduces new concepts and findings to offer original views on the perspectives and challenges in this field.
Plants are sessile and prone to multiple stresses in the changing environmental conditions. Of the several strategies adopted by plants to counteract the adverse effects of abiotic stress, phytohormones provide signals to allow plants to survive under stress conditions. They are one of the key systems integrating metabolic and developmental events in the whole plant and the response of plants to external factors and are essential for many processes throughout the life of a plant and influence the yield and quality of crops. The book ‘Phytohormones and Abiotic Stress Tolerance in Plants’ summarizes the current body of knowledge on crosstalk between plant stresses under the influence of phytohormones, and provides state-of-the-art knowledge of recent developments in understanding the role of phytohormones and abiotic stress tolerance in plants. This book presents information on how modulation in phytohormone levels affect regulation of biochemical and molecular mechanisms.

Since recent years, the population across the globe is increasing expeditiously; hence increasing the agricultural productivity to meet the food demands of the thriving population becomes a challenging task. Abiotic stresses pose as a major threat to agricultural productivity. Having an adequate knowledge and apprehension of the physiology and molecular biology of stress tolerance in plants is a prerequisite for counteracting the adverse effect of such stresses to a wider range. This book deals with the responses and tolerance mechanisms of plants towards various abiotic stresses. The advent of molecular biology and biotechnology has shifted the interest of researchers towards unraveling the genes involved in stress tolerance. More effort is being made to understand and pave ways for developing stress tolerance mechanisms in crop plants. Several technologies including Microarray technology, functional genomics, on gel and off gel proteomic approaches have proved to be of utmost importance by helping the physiologists, molecular biologists and biotechnologists in identifying and exploiting various stress tolerance genes and factors for enhancing stress tolerance in plants. This book would serve as an exemplary source of scientific information pertaining to abiotic stress responses and tolerance mechanisms towards various abiotic stresses. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Primed-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Primed-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to
enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. Provides comprehensive information for developing multiple stress-tolerant crop varieties Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance Includes contribution from world-leading cross-tolerance research group Presents color images and diagrams for effective communication of key concepts

A fully revised review of the latest research in molecular basis of plant abiotic stress response and adaptation Abiotic stressors are non-living environmental stressors that can have a negative impact on a plant's ability to grow and thrive in a given environment. Stressors can range from temperature stress (both extreme heat and extreme cold) water stress, aridity, salinity among others. This book explores the full gamut of plant abiotic stressors and plants molecular responses and adaptations to adverse environmental conditions. The new edition of Plant Abiotic Stress provides up-to-date coverage of the latest research advances in plant abiotic stress adaptation, with special emphasis on the associated and integrative aspects of physiology, signaling, and molecular-genetics. Since the last edition, major advances in whole genome analysis have revealed previously unknown linkages between genes, genomes, and phenotypes, and new biological and--omics approaches have elucidated previously unknown cellular mechanisms underlying stress tolerance. Chapters are organized by topic, but highlight processes that are integrative among diverse stress responses. As with the first edition, Plant Abiotic Stress will have broad appeal to scientists in fields of applied agriculture, ecology, plant sciences, and biology.

Plants under abiotic stress are those suffering from drought, extreme temperatures, flood and other natural—but non-living—factors. Abiotic stress is responsible for reduced yields in several major crops, and climate change is focusing research in this area. To minimize cellular damage caused by such stresses, plants have evolved complex, well-coordinated adaptive responses that operate at the transcriptional level. Understanding these processes is key to manipulating plant performance to withstand stress. This book deals with the role of gene silencing in the adaptation of plants to these stresses, and documents the molecular regulatory systems for the abiotic response.

Understanding abiotic stress responses in plants is critical for the development of new varieties of crops, which are better adapted to harsh climate conditions. The new book by the well-known editor team Narendra Tuteja and Sarvajeet Gill provides a comprehensive overview on the molecular basis of plant responses to external stress like drought or heavy metals, to aid in the engineering of stress resistant crops. After a general introduction into the topic, the following sections deal with specific signaling pathways mediating plant stress response. The last part covers translational plant physiology, describing several examples of the development of more stress-resistant crop varieties.

This book provides a valuable insight into how the area of plant adaptation to abiotic stresses has progressed through the application of the new technologies. The book consists of eight chapters written by outstanding scientists across the world, who...
carry out research at the cutting edge of their disciplines. The topics, addressed in up-to-date specific chapters, include effects and responses of plants to stresses caused by such factors as: 1) high temperature, 2) low temperature (chilling and freezing), 3) salt, 4) drought, 5) flooding, 6) heavy metals, 7) elevated carbon dioxide, 8) ozone.

Transcription Factors for Abiotic Stress Tolerance in Plants highlights advances in the understanding of the regulatory network that impacts plant health and production, providing important insights for improving plant resistance. Plant production worldwide is suffering serious losses due to widespread abiotic stresses increasing as a result of global climate change. Frequently more than one abiotic stress can occur at once, for example extreme temperature and osmotic stress, which increases the complexity of these environmental stresses. Modern genetic engineering technologies are one of the promising tools for development of plants with efficient yields and resilience to abiotic stresses. Hence deciphering the molecular mechanisms and identifying the abiotic stress associated genes that control plant response to abiotic stresses is a vital requirement in developing plants with increased abiotic stress resilience. Addressing the various complexities of transcriptional regulation, this book includes chapters on cross talk and central regulation, regulatory networks, the role of DOF, WRKY and NAC transcription factors, zinc finger proteins, CRISPR/CAS9-based genome editing, C-Repeat (CRT) binding factors (CBFs)/Dehydration responsive element binding factors (DREBs) and factors impacting salt, cold and phosphorous stress levels, as well as transcriptional modulation of genes involved in nanomaterial-plant interactions. Transcription Factors for Abiotic Stress Tolerance in Plants provides a useful reference by unravelling the transcriptional regulatory networks in plants. Researchers and advanced students will find this book a valuable reference for understanding this vital area. Discusses abiotic stress tolerance and adaptive mechanisms based on the findings generated by unlocking the transcriptional regulatory network in plants Presents various kinds of regulatory gene networks identified for drought, salinity, cold and heat stress in plants Highlights urgent climate change issues in plants and their mitigation using modern biotechnological tools including genome editing.

Abiotic Stress Responses in PlantsMetabolism, Productivity and SustainabilitySpringer Science & Business Media

Climate change is a serious problem influencing agricultural production worldwide and challenging researchers to investigate plant responses and to breed crops for the changed growing conditions. Abiotic stresses are the most important for crop production, affecting about 96.5% of arable land worldwide. These stress factors include high and low temperature, water deficit (drought) and flooding, salinity, heavy metals, UV radiation, light, chemical pollutants, and so on. Since some of the stresses occurred simultaneously, such as heat and water deficit, causing the interactions of physiological processes, novel multidisciplinary solutions are needed. This book provides an overview of the present state in the research of abiotic stresses and molecular, biochemical, and whole plant responses, helping to prevent the negative impact of global climate change.

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and
addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.
Plants are subjected to numerous environmental stresses, which can be classified into two broad areas: abiotic and biotic stresses. While the first is considered the damage done to an organism by other living organisms, the latter occurs as a result of a negative impact of non-living factors on the organisms. In this scenario, the current most accepted opinion of scientists is that both biotic and abiotic factors in nature and agroecosystems are affected by climate change, which may lead to significant crop yield decreases worldwide. We should take into consideration not only this environmental concern but also the fact that 20 years from now the earth's population will need 55% more food than it can produce now. Therefore, it is crucial to address such concerns and bring about possible solutions to future plant stress-related outcomes that might affect global agriculture. This book intends to provide the reader with a comprehensive overview of both biotic and abiotic stresses through 10 chapters that include case studies and literature reviews about these topics. There will be a particular focus on understanding the physiological, biochemical, and molecular changes observed in stressed plants as well as the mechanisms underlying stress tolerance in plants.

Plants are frequently exposed to unfavorable and adverse environmental conditions known as abiotic stressors. These factors can include salinity, drought, heat, cold, flooding, heavy metals, and UV radiation which pose serious threats to the sustainability of crop yields. Since abiotic stresses are major constraints for crop production, finding the approaches to enhance stress tolerance is crucial to increase crop production and increase food security. This book discusses approaches to enhance abiotic stress tolerance in crop plants on a global scale. Plants scientists and breeders will learn how to further mitigate plant responses and develop new crop varieties for the changing climate.

The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of crops. In this multi-authored book, we present synthesis of information for developing strategies to combat plant stress. Our effort here is to present a judicious mixture of basic as well as applied research outlooks so as to interest workers in all areas of plant science. We trust that the information covered in this book would bridge the much-researched area of stress in plants with the much-needed information for evolving climate-ready crop cultivars to ensure food security in the future.

This book offers an up-to-date review of the regulatory role of nitric oxide (NO) changes in the morphological, physio-biochemical as well as molecular characteristics of plants under abiotic stress. The first of two parts comprises four chapters and focuses on the properties, chemical reactions involving NO and reactive nitrogen species in plants. The second part, consisting of eleven chapters, describes the current understanding of the role of NO in the regulation of
gene expression, NO signaling pathways and its role in the up-regulation of the endogenous defense system and programmed cell death. Furthermore, its interactions with other signaling molecules and plant hemoglobins under environmental and soil related abiotic stresses, including post-harvest stress in fruits, vegetables and ornamentals and wounding are discussed in detail. Together with the companion book Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, this volume provides a concise overview of the field and offers a valuable reference work for teachers and researchers in the fields of plant physiology, biochemistry and agronomy.

Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses.

Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.

Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. Explores the progress made in managing abiotic stress, specifically with high yield legumes Highlights the molecular mechanisms related to
acclimation Presents proven strategies and emerging approaches to guide additional research
A state-of-the-art guide to recent developments in the understanding of plant response to abiotic stresses. Each chapter reflects how new techniques have helped physiologists, biochemists and molecular biologists to understand the basic problems of abiotic stress in plant species. The book supplies extensive bibliographies at the end of each chapter, as well as tables and figures that illustrate the research findings.
The purpose of this publication is to elucidate the biological aspect of the abiotic stress response from the field to the molecular level in horticultural plants. This book is unique in that it concerns the basic aspect of abiotic stress biology and research progress at the molecular level in model plants or major field crops, as it focuses mainly on the abiotic stress response in existing horticultural plants. Many readers interested in plant abiotic stress biology are aware of the application of the latest findings to agricultural production, and this book will have a special appeal for those readers. The book will be of interest to scientists and graduate students who are involved in the research, development, production, processing, and marketing of horticultural products, including those in developing countries who are interested in high tech and advanced science in this field. The application of the latest findings to agricultural production is particularly useful. Stress tolerance mechanisms in horticultural crops are gaining importance, because most agricultural regions are predicted to experience considerably more extreme environmental fluctuations due to global climate change. Further, because of recent progress in next-generation sequencing technologies, the postgenomic era is impending not only in model plants and major cereal crops but also in horticultural crops, which comprise a great diversity of species. This book provides information on the physiological aspects of the abiotic stress response in horticultural plants, which is considered essential for postgenomic research.
This book highlights some of the most important biochemical, physiological and molecular aspects of plant stress, together with the latest updates. It is divided into 14 chapters, written by eminent experts from around the globe and highlighting the effects of plant stress (biotic and abiotic) on the photosynthetic apparatus, metabolites, programmed cell death, germination etc. In turn, the role of beneficial elements, glutathione-S-transferase, phosphite and nitric oxide in the adaptive response of plants under stress and as a stimulator of better plant performance is also discussed. A dedicated chapter addresses research advances in connection with Capsicum, a commercially important plant, and stress tolerance, from classical breeding to the recent use of large-scale transcriptome and genome sequencing technologies. The book also explores the significance of the liliputians of the plant kingdom (Bryophytes) as biomonitors/bioindicators, and general and specialized bioinformatics resources that can benefit anyone working in the field of plant stress biology. Given the information compiled here, the book will offer a valuable guide for students and researchers of plant molecular biology and stress physiology alike.
In this ready reference, a global team of experts comprehensively cover molecular and cell biology-based approaches to the impact of increasing global temperatures on crop productivity. The work is divided into four parts. Following an introduction to the general challenges for agriculture around the globe due to climate change, part two discusses how the resulting increase of abiotic
stress factors can be dealt with. The third part then outlines the different strategies and approaches to address the challenge of climate change, and the whole is rounded off by a number of specific examples of improvements to crop productivity. With its forward-looking focus on solutions, this book is an indispensable help for the agro-industry, policy makers and academia.

A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations. "Multiple biotic and abiotic environmental factors may constitute stresses that affect plant growth and yield in crop species. Advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stress"

The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments. This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research. Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved. Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.
Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of “climate change,” a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, aberrations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.

Plant diseases, extreme weather caused by climate change, drought and an increase in metals in soil are amongst the major limiting factors of crop production worldwide. They devastate not only food supply but also the economy of a nation. Keeping in view of the global food scarcity, there is, an urgent need to develop crop plants with increased stress tolerance so as to meet the global food demands and to preserve the quality of our planet. In order to do this, it is necessary to understand how plants react and adapt to stress from the genomic and proteomic perspective. Plants adapt to stress conditions by activation of cascades of molecular mechanisms, which result in alterations in gene expression and synthesis of protective proteins/compounds. From the perception of the stimulus to transduction of the signal, followed by an appropriate response, the plants employ a complex network of primary and secondary messenger molecules. Cell signaling is the component of a complex system of communication that directs basic cellular activities and synchronizes cell actions. Cells exercise a large number of noticeably distinct signaling pathways to regulate their activity. In order to contend with different environmental adversities plants have developed a series of mechanisms at the physiological, cellular and molecular level. This two volume set takes an in-depth look at the Stress Signaling in Plants from a uniquely genomic and proteomics perspective. Stress Signaling in Plants offers a comprehensive treatise on
the Chapter, covering all of the signaling pathways and mechanisms that have been researched so far. Each chapter provides in-depth explanation of what we currently know of a particular aspect of stress signaling and where we are headed. All authors have currently agreed and abstracts have been compiled for the first volume, due out midway through 2012. We aim to have the second volume out at the beginning of 2013.

Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.

Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. Focuses on plant biology under stress conditions Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses Identifies treatments that enhance plant tolerance to abiotic stresses Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses

Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide. Features · Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants · Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability · Stimulates synthesis of information for plant stress biology for biotechnological applications · Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications.

Plant responses to environmental stress are governed by complex molecular and biochemical signal transduction processes, which act in coordination to determine tolerance or sensitivity at the whole plant level. Upon exposure to abiotic stress, plants express a sophisticated coordinated response to reprogram interconnected defense networks and metabolic pathways, by alterations in the transcription, translation,
and post-translational modification of defense-related genes and proteins. Traditionally, physiological and phenotypic responses were the major ones to be collected in plant stress biology. However, modern studies include the identification of key genes that influence stress tolerance and plant growth under the imposing stress and the verification of gene functions using knock out mutants or overexpression lines. In addition, genomics has become a necessary tool for the understanding of plant stress responses at the whole genome levels. The identification of stress-tolerant plant resources and the investigation of the functional role of the genetic variants is also a valuable tool in this research field. Recently, the advent of CRISPR/Cas genome editing technology, enables these variations to be introduced in crops for improved stress tolerance traits. Through the understanding of the molecular mechanisms involved in plant signaling in response to abiotic stress and crop performance characters under stress conditions, we hope to open new ways for the breeding of superior crops.

Copyright: 341817fcf85a9bca9d5d8fc80962f4f4